EXERCISES [MAI 4.12]

POISSON DISTRIBUTION

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)

$\mathrm{P}(X=3)$	$0.21376 . . \cong 0.214$	$\mathrm{P}(3 \leq X \leq 5)$	$0.41416 . . \cong 0.414$
$\mathrm{P}(X \leq 3)$	$0.75757 . . \cong 0.758$	$\mathrm{P}(X \geq 3)$	$0.45618 . . \cong 0.456$
$\mathrm{P}(X<3)$	$0.54381 . . \cong 0.544$	$\mathrm{P}(X>3)$	$0.24242 . . \cong 0.242$

(b)

$\mathrm{P}(X=3 \mid X \geq 3)$	$0.21376 / 0.45618=0.469$
$\mathrm{P}(X \leq 5 \mid X \geq 3)$	$0.41416 / 0.45618=0.908$
$\mathrm{P}(X \geq 5 \mid X \geq 3)$	$0.10882 / 0.45618=0.239$
$\mathrm{P}(X \leq 3 \mid X \leq 5)$	$0.75757 / 0.95797=0.791$

(c) $\mathrm{P}(X=2)=0.257$ and $\mathrm{P}(X=3)=0.214$, hence mode $=2$
2. (a) For $m=2 \quad \mathrm{P}(X=1)=0.271$
(b) For $m=2 \quad \mathrm{P}(X=2)=0.271$
(c) For $m=4 \quad \mathrm{P}(X=1)=0.0733$
(d) For $m=4 \quad \mathrm{P}(X=2)=0.147$
(e) For $m=1 \quad \mathrm{P}(X=0)=0.368$
3. (a) For $m=1 \quad \mathrm{P}(X=1)=0.368$
(b) For $m=0.5 \mathrm{P}(X=1)=0.303$
(c) For $m=0.5 \mathrm{P}(X=0)=0.607$
(d) For $m=2 \quad \mathrm{P}(X=3)=0.180$
4. (a) For $m=2 \quad \mathrm{P}(X=3)=0.180$
(b) For $m=2 \quad \mathrm{P}(X \leq 3)=0.857$
(c) For $m=2 \quad \mathrm{P}(X \geq 3)=0.323$
5. $\quad X$ follows Poisson distribution with $m=2$

Bet	$10 €$	$-1 €$	$-2 €$
X	0	1 or 2	≥ 3
Probability	0.135	0.541	0.323

$\mathrm{E}($ Profit $)=0.163 . \quad$ For 10 times \quad Expected profit $=10 \times 0.163=1.63 €$
6. (a) For $m=0.5 \mathrm{P}(X=0)=0.60653 \ldots \cong 0.607$
(b) For $m=2.5 \mathrm{P}(X=0)=0.08208 \ldots \cong 0.0821$
(c) Binomial Y with $n=5, p=0.60653, \mathrm{P}(Y=2)=0.224$
7. (a) $\mathrm{P}(3 \leq X \leq 5)=\mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 2)=0.547$
(b) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)=0.762$
(c) $\mathrm{P}(3 \leq X \leq 5 \mid X \geq 3)=\frac{\mathrm{P}(3 \leq X \leq 5)}{\mathrm{P}(\mathrm{X} \geq 3)}\left(=\frac{0.547}{0.762}\right)=0.718$
8. $\mathrm{P}(X \geq 5)=0.1847$
9. (a) Let X denote the number of flaws in one metre of the wire. $m=2.3$ $P(X=2)=0.265$.
(b) Let Y denote the number of flaws in two metres of wire $m=2 \times 2.3=4.6$ $P(Y \geq 1)=0.990$ (3 s.f.)
10. (a) $m=1.5 \quad P(X>2)=0.191$
(b) $\quad m=1.5 \quad P(X>2 \mid X \geq 1)=\frac{0.191153}{0.776869}=0.246$
11. (a) $m=0.6 \quad P(X \geq 2) \cong 0.122$
(b) $\quad P(X=0)=0.548>0.5$ so $\mathrm{X}=0$ is the mode
(c) $m=7 \times 0.6=4.2 \quad P(Y=0) \cong 0.0150$
$\left(\mathbf{O R}\right.$ with $m=0.6 \quad P(X=0)=0.548$.. so $0.548^{7} \cong 0.0150$
12. (a) $X \sim \operatorname{Po}(3.2) \quad \mathrm{P}(X=4) \cong 0.178$
(b) $\quad Y \sim \operatorname{Po}(1.90) \quad \mathrm{P}(Y=3) \cong 0.171$

Required probability $=0.171 \times 0.178 \cong 0.0304$
13. (a) $m=4 \quad \mathrm{P}(X+Y=3)=0.19536 . . \cong 0.195$
(b)

a	b	$P(X=a)$	$P(Y=b)$	$P(X=a$ and $Y=b)$
0	3	0.04979	0.06131	0.00305
1	2	0.14936	0.18394	$\mathbf{0 . 0 2 7 4 7}$
2	1	$\mathbf{0 . 2 2 4 0 4}$	$\mathbf{0 . 3 6 7 8 8}$	$\mathbf{0 . 0 8 2 4 2}$
3	0	$\mathbf{0 . 2 2 4 0 4}$	0.36788	0.08242

(c) sum $=0.00305+0.02747+0.08242+0.08242=0.19536 . . \cong 0.195$

The result is equal to the result in question (a).
Both results calculate the probability that $X+Y=3$
14. (a) $X+Y \sim \operatorname{Po}(4), \quad \mathrm{P}(X+Y=3)=0.19536 . . \cong 0.195$
(b) $\quad P(X=1$ and $Y=2 \mid X+Y=3)=\frac{0.02747}{0.19536}=0.141$
(c) $\quad P(X<Y \mid X+Y=3)=\frac{0.00305+0.02747}{0.19536}=0.156 \quad$ (see table in question 13)
15. $A+B \sim \operatorname{Po}(7)$,
(a) $\mathrm{P}(A+B=5)=0.12771 . . \cong 0.128$
(b) $\mathrm{P}(A+B<5)=0.17299 . . \cong 0.173$
(c) $\mathrm{P}(A+B>5)=0.69929 . . \cong 0.699$
16. $\quad A \sim \operatorname{Po}(4), \quad B \sim \operatorname{Po}(5), \quad$ so $A+B \sim \operatorname{Po}(9)$,
(a) $\mathrm{P}(A=4$ and $B=5)=0.19536 . . \times 0.17546 . . \cong 0.0343$
(b) $\mathrm{P}(A+B=10) \cong 0.119$
(c) $\quad m=7 \times 9=63, \mathrm{P}(A+B \leq 50) \cong 0.0537$
17. $B \sim \operatorname{Po}(2.7), S \sim \operatorname{Po}(2.5)$
(a) (i) $\mathrm{P}(B=2)=0.245$
(ii) $\mathrm{P}(S=3)=0.214$
(iii) The two events are independent. $\mathrm{P}(B=2) \times \mathrm{P}(S=3)=0.214 \times 0.245 \cong 0.0524$
(b) $B+S \sim \operatorname{Po}(5.2), \quad \mathrm{P}(B+S=5)=0.17478 . . \cong 0.175$
(c) $\mathrm{P}(B=2) \mathrm{P}(S=3)=0.245 \times 0.214 \cong 0.0524$
$\mathrm{P}(B=1) \mathrm{P}(S=4)=0.181 \times 0.133 \cong 0.0242$
$\mathrm{P}(B=0) \mathrm{P}(S=5)=0.067 \times 0.067 \cong 0.0045$
$\mathrm{P}(B<S)=\frac{0.0524+0.0242+0.0045}{0.175}=\frac{0.0811}{0.175} \cong 0.464($ or 0.463$)$
18. (a) For a 15 minute period $m=15 / 4=3.75 . \mathrm{P}(X=6) 0.0908$
(b) For the first operator $m_{1}=0.01 \times 20=0.2$

For the second operator $m_{2}=0.03 \times 40=1.2$
(c) Let F_{1}, F_{2} be random variables which represent the number of failures to answer telephone calls by the first and the second operator, respectively.
$F_{1} \sim \mathrm{P}_{0}(0.2)$ and $F_{2} \sim \mathrm{P}_{0}(1.2)$.
Since F_{1} and F_{2} are independent $F_{1}+F_{2} \sim \mathrm{P}_{0}(0.2+1.2)=\mathrm{P}_{0}(1.4)$
$\mathrm{P}\left(F_{1}+F_{2} \geq 2\right)=0.408$

B. Paper 2 questions (LONG)

19. (a) For 4 weeks $m=2 \times 4=8, \mathrm{P}(X=8)=0.13958 \ldots \cong 0.140$
(b) $\quad m=8, \mathrm{P}(\mathrm{X}>8)=0.40745 \ldots \cong 0.407$
(c) $m=8, \mathrm{P}(\mathrm{X} \geq 8)=0.54703 \ldots \cong 0.547$
(d) $\quad Y \sim \mathrm{~B}(n, p)$ with $n=13, p=0.54703, \mathrm{P}(\mathrm{X}>9)=0.0894$
20. (a) mean for 30 days: $30 \times 0.2=6 . \mathrm{P}(X=4)=0.134$
(b) $\mathrm{P}(X>3)=0.849$
(c) EITHER
mean for five days: $5 \times 0.2=1 \quad \mathrm{P}(X=0)=0.368$

OR

mean for one day: $0.2 \quad \mathrm{P}(X=0)=0.81873$
so for 5 days $0.81873^{5}=0.368$
(d) Required probability $=0.81873 \times 0.81873 \times(1-0.81873)=0.122$
(e) Expected cost is $1850 \times 6=11100$ euros
(f) On any one day $\mathrm{P}(X=0)=0.81873$
$\mathrm{Y} \sim \mathrm{B}(5,0.81873), \quad \mathrm{P}(\mathrm{Y}=4)=0.407$
21. (a) (i) $\mathrm{P}(4.8<X<7.5)=0.629$
(ii) $\mathrm{P}(X<d)=0.15, d=4.45(\mathrm{~km})$
(b) (i) $\mathrm{P}(T \geq 3)=0.679 \ldots$

Required probability is $(0.679 \ldots)^{2}=0.461$
(ii) $m=3.5 \times 5=17.5 \quad \mathrm{P}(\mathrm{Y}=15)=0.0849$
22. (a) $\mathrm{P}(T<10)=0.299,30 \%$
(b) $m=2 \times 6=12, \mathrm{P}(X=8)=0.0655$
(c) $m=12, \mathrm{P}(X=13)=0.1055, \mathrm{P}(X \geq 10)=0.7576$
$\mathrm{P}(X=13 \mid X \geq 10)=\frac{P(X=13)}{P(X \geq 10)}=\frac{0.1055}{0.7576}=0.139$
(d) Let Y be the random variable "number of text messages in 15 minutes"

Let D be the random variable "number of days with no messages received"
$Y \sim \operatorname{Po}(1.5)$
$\mathrm{P}(Y=0)=0.2231 \ldots$
$D \sim \mathrm{~B}(5,0.2231 \ldots)$
$\mathrm{P}(D=3)=0.0670$

