EXERCISES [MAI 4.12] POISSON DISTRIBUTION

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)

P(X=3)	0.21376 ≅ 0.214	$P(3 \le X \le 5)$	0.41416 ≅ 0.414
$P(X \le 3)$	0.75757 ≅ 0.758	$P(X \ge 3)$	0.45618 ≅ 0.456
P(<i>X</i> < 3)	0.54381 ≅ 0.544	P(X > 3)	0.24242 ≅ 0.242

(b)

$P(X=3 X\geq 3)$	0.21376/0.45618 = 0.469
$P(X \le 5 \mid X \ge 3)$	0.41416/0.45618 = 0.908
$P(X \ge 5 X \ge 3)$	0.10882/0.45618 = 0.239
$P(X \le 3 \mid X \le 5)$	0.75757/0.95797 = 0.791

(c) P(X=2) = 0.257 and P(X=3) = 0.214, hence **mode** = 2

2. (a) For m = 2 P(X = 1) = 0.271

- (b) For m = 2 P(X = 2) = 0.271
- (c) For m = 4 P(X = 1) = 0.0733
- (d) For m = 4 P(X = 2) = 0.147
- (e) For m = 1 P(X = 0) = 0.368

3. (a) For m = 1 P(X = 1) = 0.368

- (b) For m = 0.5 P(X=1) = 0.303
- (c) For m = 0.5 P(X=0) = 0.607
- (d) For m = 2 P(X = 3) = 0.180
- 4. (a) For m = 2 P(X = 3) = 0.180
 - (b) For m = 2 P($X \le 3$) = 0.857
 - (c) For m = 2 P($X \ge 3$) = 0.323

5. *X* follows Poisson distribution with m = 2

Bet	10€	-1€	-2€
X	0	1 or 2	≥3
Probability	0.135	0.541	0.323

E(Profit) = 0.163.

For 10 times Expected profit = $10 \times 0.163 = 1.63 \in$

- 6. (a) For $m = 0.5 P(X=0) = 0.60653... \cong 0.607$
 - (b) For $m = 2.5 P(X=0) = 0.08208... \approx 0.0821$
 - (c) Binomial *Y* with n = 5, p = 0.60653, P(Y = 2) = 0.224

7. (a)
$$P(3 \le X \le 5) = P(X \le 5) - P(X \le 2) = 0.547$$

(b)
$$P(X \ge 3) = 1 - P(X \le 2) = 0.762$$

(c)
$$P(3 \le X \le 5 | X \ge 3) = \frac{P(3 \le X \le 5)}{P(X \ge 3)} \left(= \frac{0.547}{0.762} \right) = 0.718$$

- 8. $P(X \ge 5) = 0.1847$
- 9. (a) Let X denote the number of flaws in one metre of the wire. m = 2.3P(X = 2) = 0.265.
 - (b) Let Y denote the number of flaws in two metres of wire $m = 2 \times 2.3 = 4.6$ $P(Y \ge 1) = 0.990 (3 \text{ s.f.})$

10. (a)
$$m = 1.5$$
 $P(X>2) = 0.191$
(b) $m = 1.5$ $P(X>2|X \ge 1) = \frac{0.191153}{0.776869} = 0.246$

- **11.** (a) $m = 0.6 \quad P(X \ge 2) \cong 0.122$
 - (b) P(X=0) = 0.548 > 0.5 so X = 0 is the mode
 - (c) $m = 7 \times 0.6 = 4.2 \ P(Y=0) \cong 0.0150$ (OR with $m = 0.6 \ P(X=0) = 0.548$.. so $0.548^7 \cong 0.0150$

12. (a)
$$X \sim Po(3.2) \quad P(X=4) \cong 0.178$$

(b) $Y \sim Po(1.90)$ $P(Y=3) \cong 0.171$ Required probability = $0.171 \times 0.178 \cong 0.0304$

13. (a)
$$m = 4$$
 $P(X+Y=3) = 0.19536.. \cong 0.195$

(b)

a	b	P(X=a)	P(Y=b)	P(X = a and Y = b)
0	3	0.04979	0.06131	0.00305
1	2	0.14936	0.18394	0.02747
2	1	0.22404	0.36788	0.08242
3	0	0.22404	0.36788	0.08242

(c) $sum = 0.00305 + 0.02747 + 0.08242 + 0.08242 = 0.19536 \dots \approx 0.195$

The result is equal to the result in question (a).

Both results calculate the probability that X + Y = 3

14. (a) $X + Y \sim Po(4)$, $P(X+Y=3) = 0.19536... \cong 0.195$

(b)
$$P(X = 1 \text{ and } Y = 2 | X + Y = 3) = \frac{0.02747}{0.19536} = 0.141$$

(c)
$$P(X < Y | X + Y = 3) = \frac{0.00305 + 0.02747}{0.19536} = 0.156$$
 (see table in question 13)

15. $A + B \sim Po(7)$,

(a)
$$P(A+B=5) = 0.12771.. \cong 0.128$$

(b)
$$P(A+B < 5) = 0.17299.. \cong 0.173$$

(c) $P(A+B>5) = 0.69929.. \cong 0.699$

16. $A \sim Po(4)$, $B \sim Po(5)$, so $A + B \sim Po(9)$,

(a)
$$P(A = 4 \text{ and } B = 5) = 0.19536.. \times 0.17546.. \cong 0.0343$$

- (b) $P(A + B = 10) \cong 0.119$
- (c) $m = 7 \times 9 = 63$, $P(A + B \le 50) \cong 0.0537$
- 17. $B \sim Po(2.7), S \sim Po(2.5)$
 - (a) (i) P(B = 2) = 0.245
 - (ii) P(S = 3) = 0.214
 - (iii) The two events are independent. $P(B=2) \times P(S=3) = 0.214 \times 0.245 \cong 0.0524$

(b)
$$B + S \sim Po(5.2)$$
, $P(B + S = 5) = 0.17478.. \approx 0.175$

(c)
$$P(B = 2) P (S = 3) = 0.245 \times 0.214 \cong 0.0524$$

 $P(B = 1) P (S = 4) = 0.181 \times 0.133 \cong 0.0242$
 $P(B = 0) P (S = 5) = 0.067 \times 0.067 \cong 0.0045$
 $P(B < S) = \frac{0.0524 + 0.0242 + 0.0045}{0.175} = \frac{0.0811}{0.175} \cong 0.464 \text{ (or } 0.463)$

- **18.** (a) For a 15 minute period m = 15/4 = 3.75. P(X = 6) 0.0908
 - (b) For the first operator $m_1 = 0.01 \times 20 = 0.2$ For the second operator $m_2 = 0.03 \times 40 = 1.2$

(c) Let F_1 , F_2 be random variables which represent the number of failures to answer telephone calls by the first and the second operator, respectively. $F_1 \sim P_0 (0.2)$ and $F_2 \sim P_0 (1.2)$. Since F_1 and F_2 are independent $F_1 + F_2 \sim P_0 (0.2 + 1.2) = P_0(1.4)$ $P(F_1 + F_2 \ge 2) = 0.408$

B. Paper 2 questions (LONG)

19.	(a)	For 4 weeks $m = 2 \times 4 = 8$, $P(X = 8) = 0.13958 \approx 0.140$
	(b)	$m = 8, P(X > 8) = 0.40745 \dots \approx 0.407$
	(c)	$m = 8, P(X \ge 8) = 0.54703 \cong 0.547$
	(d)	$Y \sim B(n,p)$ with $n = 13$, $p = 0.54703$, $P(X > 9) = 0.0894$
20.	(a)	mean for 30 days: $30 \times 0.2 = 6$. $P(X=4) = 0.134$
	(b)	P(X > 3) = 0.849
	(c)	EITHER
		mean for five days: $5 \times 0.2 = 1$ $P(X=0) = 0.368$
		OR
		mean for one day: $0.2 P(X=0) = 0.81873$
		so for 5 days $0.81873^5 = 0.368$
	(d)	Required probability = $0.81873 \times 0.81873 \times (1 - 0.81873) = 0.122$
	(e)	Expected cost is $1850 \times 6 = 11100$ euros
	(f)	On any one day $P(X=0) = 0.81873$
		$Y \sim B(5,0.81873), P(Y = 4) = 0.407$
21.	(a)	(i) $P(4.8 < X < 7.5) = 0.629$
		(ii) $P(X < d) = 0.15$, $d = 4.45$ (km)
	(b)	(i) $P(T \ge 3) = 0.679$
		Required probability is $(0.679)^2 = 0.461$
		(ii) $m = 3.5 \times 5 = 17.5$ P(Y=15) = 0.0849
22.	(a)	P(T < 10) = 0.299, 30%
	(b)	$m = 2 \times 6 = 12$, $P(X = 8) = 0.0655$
	(c)	$m = 12, P(X=13) = 0.1055, P(X \ge 10) = 0.7576$
		$P(X=13 \mid X \ge 10) = \frac{P(X=13)}{P(X \ge 10)} = \frac{0.1055}{0.7576} = 0.139$
	(d)	Let Y be the random variable "number of text messages in 15 minutes" Let D be the random variable "number of days with no messages received" $Y \sim Po(1.5)$
		P(Y=0) = 0.2231
		$D \sim B(5, 0.2231)$
		P(D=3) = 0.0670